Evaluating Amazon's Mechanical Turk as a Tool for Experimental Behavioral Research
نویسندگان
چکیده
Amazon Mechanical Turk (AMT) is an online crowdsourcing service where anonymous online workers complete web-based tasks for small sums of money. The service has attracted attention from experimental psychologists interested in gathering human subject data more efficiently. However, relative to traditional laboratory studies, many aspects of the testing environment are not under the experimenter's control. In this paper, we attempt to empirically evaluate the fidelity of the AMT system for use in cognitive behavioral experiments. These types of experiment differ from simple surveys in that they require multiple trials, sustained attention from participants, comprehension of complex instructions, and millisecond accuracy for response recording and stimulus presentation. We replicate a diverse body of tasks from experimental psychology including the Stroop, Switching, Flanker, Simon, Posner Cuing, attentional blink, subliminal priming, and category learning tasks using participants recruited using AMT. While most of replications were qualitatively successful and validated the approach of collecting data anonymously online using a web-browser, others revealed disparity between laboratory results and online results. A number of important lessons were encountered in the process of conducting these replications that should be of value to other researchers.
منابع مشابه
Conducting behavioral research on Amazon's Mechanical Turk.
Amazon's Mechanical Turk is an online labor market where requesters post jobs and workers choose which jobs to do for pay. The central purpose of this article is to demonstrate how to use this Web site for conducting behavioral research and to lower the barrier to entry for researchers who could benefit from this platform. We describe general techniques that apply to a variety of types of resea...
متن کاملDocument Image Collection Using Amazon's Mechanical Turk
We present findings from a collaborative effort aimed at testing the feasibility of using Amazon’s Mechanical Turk as a data collection platform to build a corpus of document images. Experimental design and implementation workflow are described. Preliminary findings and directions for future work are also discussed.
متن کاملPreliminary Experiments with Amazon's Mechanical Turk for Annotating Medical Named Entities
Amazon’s Mechanical Turk (MTurk) service is becoming increasingly popular in Natural Language Processing (NLP) research. In this paper, we report our findings in using MTurk to annotate medical text extracted from clinical trial descriptions with three entity types: medical condition, medication, and laboratory test. We compared MTurk annotations with a gold standard manually created by a domai...
متن کاملFast, Cheap, and Creative: Evaluating Translation Quality Using Amazon's Mechanical Turk
Manual evaluation of translation quality is generally thought to be excessively time consuming and expensive. We explore a fast and inexpensive way of doing it using Amazon’s Mechanical Turk to pay small sums to a large number of non-expert annotators. For $10 we redundantly recreate judgments from a WMT08 translation task. We find that when combined non-expert judgments have a high-level of ag...
متن کاملUsing Amazon's Mechanical Turk for Annotating Medical Named Entities.
Amazon's Mechanical Turk (AMT) service is becoming increasingly popular in Natural Language Processing (NLP) research. In this poster, we report our findings in using AMT to annotate biomedical text extracted from clinical trial descriptions with three entity types: medical condition, medication, and laboratory test. We also describe our observations on AMT workers' annotations.
متن کامل